Abstract
Aspergillus nidulans produces two major siderophores: it excretes triacetylfusarinine C to capture iron and contains ferricrocin as an intracellular iron-storage compound. Siderophore biosynthesis involves the enzymatic activity of nonribosomal peptide synthetases (NRPS). NRPS contain 4'-phosphopantetheine as an essential prosthetic group, which is attached by 4'-phosphopantetheinyl transferases. A. nidulans appears to possess at least one gene, npgA, encoding such an enzyme. Using a strain carrying a temperature-sensitive allele, cfwA2, we showed that NpgA is essential for biosynthesis of both the peptide bond-containing ferricrocin and the ester bond-containing triacetylfusarinene C. The cfwA2 strain was found to be iron-starved at the restrictive temperature during iron-replete conditions, consistent with the siderophore system being the major iron-uptake system-as we recently demonstrated. Northern analysis indicated that, in contrast to other genes which are involved in siderophore biosynthesis and uptake, expression of npgA is not controlled by the GATA-transcription factor SreA. It was shown previously that NpgA is required for biosynthesis of penicillin, pigment, and potentially lysine via the alpha-aminoadipate pathway. Supplementation with lysine plus triacetylfusarinine C restored normal growth of the cfwA2 strain at the restrictive temperature, suggesting that the growth defect of the mutant is mainly due to impaired biosynthesis of siderophores and lysine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.