Abstract

Cesium ions (Cs+ ) and strontium ions (Sr2+ ), which enter the human body mainly through drinking water, are an important determinant of health. They are widely distributed on Earth and extremely soluble in water. In order to assist assessment of the drinking safety, it was essential to develop a rapid analytical method for quantification. We have established a 4-mercaptobenzoic acid (MBA)-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) method for the rapid detection and sensitive quantification of Cs+ and Sr2+ in the aqueous environment. Using MBA as the matrix, the rapid detection and quantification for Cs+ and Sr2+ were conducted by MALDI-TOF-MS. At first, the concentration of MBA was optimized. Then, salt tolerance, detection limit and reproducibility of this method were evaluated by standard solutions. Finally, the calibration curves were constructed and applied to the rapid determination of Cs+ and Sr2+ in six commercially available bottled waters for drinking. For the MBA-assisted MALDI-TOF-MS method, the optimal concentration of MBA was 2mg/mL. The signal-to-noise (S/N) ratio of Cs+ was up to 971 in 1000 mmol/mL NaCl solution. The detection limits of the method for Cs+ and Sr2+ were 3pg/mL and 10pg/mL, respectively. Furthermore, this developed method was applied to the rapid analysis of Cs+ and Sr2+ in six commercially available drinking waters, and the results correlated well with the results obtained from a validated inductively coupled plasma mass spectrometry (ICP-MS) method. The MBA-assisted MALDI-TOF-MS method has high sensitivity, fast detection speed, less background interference, and high reproducibility in the analysis of Cs+ and Sr2+ . Because of the physiological functions and general toxic effects, detection of Cs+ and Sr2+ in water is of major importance for drinking safety.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.