Abstract

In this approach, Co3O4@Er2O3 nanorods (NRs) were prepared by a wet-chemical method using reducing agents in alkaline medium. The resulting nanoparticles were characterized in details by UV/Vis and FT-IR spectroscopy, X-ray powder diffraction, Elemental dispersive analysis (EDS) coupled with field-emission scanning electron microscopy (FESEM). Co3O4@Er2O3NRs were deposited on a glassy carbon electrode (GCE) to give a selective sensor with a fast response toward 4-hexyl resorcinol (4-HR) in phosphate buffer phase (PBS) by electrochemical approach. The 4-HR sensor also displays good sensitivity, large linear dynamic range, lowest detection limit, and long-term stability, and enhanced electrochemical response. The calibration plot is linear over the 0.1nM–0.01M 4-HR concentration range. The sensitivity is ∼14.765μAμM−1cm−2, and the detection limit is 64.29 pM (signal-to-noise ratio, at a SNR of 3). We also discuss possible future prospective uses of this doped metal oxide semiconductor nanomaterial in terms of chemical sensing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call