Abstract

Power cycling tests (PCTs) assess the reliability of power devices by closely simulating their operating conditions. A PCT was performed on commercially available 1.2 kV 4H-SiC power metal–oxide–semiconductor field-effect transistors to observe its impact on the 4H-SiC/SiO2 interface. High-resolution transmission electron microscopy and electron energy loss spectroscopy measurements showed variations in the length of the 4H-SiC/SiO2 transition layer, depending on whether the device was power cycled. Moreover, the total resistance at Vg >> Vt in Rtot − (Vg-Vt)−1 graph increased to 16.5%, while it changed more radically to 47.3% at Vg ≈ Vt. The threshold voltage shifted negatively. These variations cannot be expected solely through the wearout of the package.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.