Abstract

The development of high-efficiency and stabilized tandem solar cells and solar cells for indoor light harvesting relies heavily on the fabrication of wide-bandgap (WBG) perovskite solar cells (PSCs) that exhibit exceptional efficiency and stability. In this study, we introduce an effective method for enhancing the optoelectronic properties of a 1.74 eV WBG perovskite absorber by interfacial engineering. Specifically, we utilize 4F-Phenethylammonium Chloride (4F-PEACL) as a key component for the surface treatment of perovskite layer. The treatment of perovskite with 4F-PEACL alters the surface stoichiometry, promoting self-doping and surface passivation, reducing surface recombination, and improving the optoelectronic properties of perovskite. Consequently, PCSs with perovskite treated with 4F-PEACL exhibit a notable power conversion efficiency of 20.27 %. Furthermore, the devices subjected to 4F-PEACL treatment demonstrate enhanced stability compared to the control devices across a range of testing settings. The findings of our study indicate that the utilization of organic salt perovskite passivation holds great potential in the development of efficient and stable WBG PSCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.