Abstract

Respiratory syncytial virus (RSV) requires protein biosynthesis machinery to generate progeny. There is evidence that RSV might alter some translation components since stress granules are formed in their host cells. Consistent with these observations, we found that RSV induces dephosphorylation of 4EBP1 (eIF4E-binding protein), an important cellular translation factor. Our results show no correlation between the 4EBP1 dephosphorylation time and the decrease in the global rate of protein synthesis. Interestingly, treatment with rapamycin stimulates virus generation. The results suggest that RSV is a virus that still contains unknown mechanisms involved in the translation of their mRNAs through the alteration or modification of some translation factors, such as 4EBP1, possibly to favor its replicative cycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call