Abstract

Inaccuracy of conventional four-dimensional (4D) flow MR imaging in the presence of random unsteady and turbulent blood flow distal to a narrowing has been an important challenge. Previous investigations have revealed that shorter echo times (TE) decrease the errors, leading to more accurate flow assessments. In this study, as part of a 4D flow acquisition, an Ultra-Short TE (UTE) method was adopted. UTE works based on a center-out radial k-space trajectory that inherently has a short TE. By employing free induction decay sampling starting from read-out gradient ramp-up, and by combining the refocusing lobe of the slice select gradient with the bipolar flow encoding gradient, TEs of ≈1 msec may be achieved. Both steady and pulsatile flow regimes, and in each case a range of Reynolds numbers, were studied in an in-vitro model. Flow assessment at low and medium flow rates demonstrated a good agreement between 4D UTE and conventional 4D flow techniques. However, 4D UTE flow significantly outperformed conventional 4D flow, at high flow rates for both steady and pulsatile flow regimes. Feasibility of the method in one patient with Aortic Stenosis was also demonstrated. For both steady and pulsatile high flow rates, the measured flow distal to the stenotic narrowing using conventional 4D flow revealed more than 20% error compared to the ground-truth flow. This error was reduced to less than 5% using the 4D UTE flow technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.