Abstract

Recent advances in high-speed pixelated electron detectors have substantially facilitated the implementation of four-dimensional scanning transmission electron microscopy (4D-STEM). A critical application of 4D-STEM is electron ptychography, which reveals the atomic structure of a specimen by reconstructing its transmission function from redundant convergent-beam electron diffraction patterns. Although 4D-STEM ptychography offers many advantages over conventional imaging modes, this emerging technique has not been fully applied to materials highly sensitive to electron beams. In this Outlook, we introduce the fundamentals of 4D-STEM ptychography, focusing on data collection and processing methods, and present the current applications of 4D-STEM ptychography in various materials. Next, we discuss the potential advantages of imaging electron-beam-sensitive materials using 4D-STEM ptychography and explore its feasibility by performing simulations and experiments on a zeolite material. The preliminary results demonstrate that, at the low electron dose required to preserve the zeolite structure, 4D-STEM ptychography can reliably provide higher resolution and greater tolerance to the specimen thickness and probe defocus as compared to existing imaging techniques. In the final section, we discuss the challenges and possible strategies to further reduce the electron dose for 4D-STEM ptychography. If successful, it will be a game-changer for imaging extremely sensitive materials, such as metal-organic frameworks, hybrid halide perovskites, and supramolecular crystals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call