Abstract
The key issues in CO2 sequestration monitoring involve accurate monitoring, from the injection stage to prediction & verification, of CO2 movement over time for environmental considerations. A natural non‐intrusive monitoring technique is referred to as “4D seismics”, which involves 3D time‐lapse seismic surveys. The success of monitoring the CO2 movement is subject to a proper description of the physical properties of the structure. We realize time‐lapse migrations comparing acoustic, elastic, and poroelastic simulations of 4D seismic imaging to characterize the storage zone, based solely upon the first arrival traveltime anomaly arising from the injection of CO2. This approach highlights the influence of using different physical theories on interpreting seismic data, and, more importantly, on extracting the CO2 signature from the seismic wave field. Simulations are performed using a spectral‐element method, which allows for highly accurate results. Biot's equations are implemented to account for poroelastic effects. The sensitivity of observables to the model parameters is quantified based upon finite‐frequency sensitivity kernels calculated using an adjoint method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.