Abstract

AbstractCO2 sequestration in depleted carbonate reservoir stipulate incorporation of comprehensive and trailblazing monitoring technologies. 4D time-lapse seismic is sine qua non for Monitoring, Measurement and Verification (MMV) planning to demonstrate the migration of CO2 plume within geological storage. An ingenious, adaptive and site specific MMV plan for monitoring CO2 plume is paramount to minimize possible subsurface and project integrity risks. Integration of dynamic simulation with seismic forward modeling aggrandize the capabilities of 4D seismic in CO2 sequestration projects.Depleted carbonate reservoir has been thoroughly studied and its geomechanical and geochemical modeling results were coupled into dynamic simulation. Reservoir porosity and fluid properties along with CO2 saturation and injection pressure distribution within each reservoir level were generated. The dynamic simulation results were integrated with seismic forward modeling to demonstrate the CO2 plume migration and its impact on seismic amplitude. Fluid acoustic properties were computed for carbonate reservoir using FLAG method. Selection of wells was based on availability of superior quality acoustic logs as well as those representing the reservoir best. Gassmann fluid substitution exercise was carried using dry rock modeling. Several scenarios were generated, and results were analyzed to demonstrate the effect of CO2 saturation and pressure build-ups within reservoir on the seismic amplitude due to continuous CO2 injection.Synthetic seismic AVO gathers were generated for angles ranging from 5 to 50 degree. Near, Mid and Far seismic amplitude response at the top of carbonate reservoir were analyzed with respect to in-situ condition for each scenario. Results reveal that CO2 saturation as low as 25 - 30% in depleted carbonate reservoir can be distinguished from 4D time-lapse seismic. With continuous CO2 injection, the reservoir pressure increases and this in turn controls the properties of both in-situ and injected fluids. The gradual changes in fluid properties and their impact on bulk acoustic properties of reservoir were modeled to assess the feasibility of using 4D seismic as a predictive tool for detection of localized and provincial pressure build-ups. Modeling results show that although observed changes in amplitude on synthetic gathers were subtle, it is expected that 4D seismic with high signal-to-noise ratio possibly be able to image such localized pressure build-ups. To monitor CO2 plume migration as well as localized pressure build-ups, we recommend acquiring multi-azimuth (MAZ) surface seismic in combination with 3D DAS-VSP for superior subsurface imaging. The integrated modeling approach ensures that 4D Seismic in subsurface CO2 plume monitoring is robust. Monitoring pressure build-ups from MAZ surface seismic and 3D DAS-VSP will reduce the associated risks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call