Abstract

Abstract This paper is dedicated to a pre-salt carbonate field located within the Santos Basin, Brazil, comprising thick Aptian reservoirs interspersed with igneous rocks. One of the main challenges for reservoir management is the surface constraint on the gas, as all of the produced gas will have to be reinjected and can be miscible with the in-situ hydrocarbons. The recovery mechanism selected is mainly WAG (water alternating gas) injection, with both producers and injectors equipped with intelligent completions using Inflow Control Valves (ICVs). A 4D seismic monitoring survey is planned to delineate gas and water fronts in reservoir flow units about 10m thick, providing critical information to help piloting a planned 6-month WAG cycle for improved recovery. Seismic imaging is challenging in this case and 4D signal is expected to be weak (±2% dIp/Ip). We propose here, a methodology, based on a 1-D Gassmann fluid substitution model at wells (only limited reservoir fluid PVT data available) to rapidly answer the following pertinent questions as posed by the asset team in charge of the field: From a phenomenological stand-point and neglecting some possible processing, imaging and acquisition challenges, will 4D data (post 4D inversion) detect a gas streak from an injector to a producer? What is the 4D seismic detection limit based on reservoir thickness? What kind of seismic acquisition will assure this detectability? Under the assumptions made in this work, this methodology shows that a permanent system of acquisition seems to be a fit-for-purpose technology for detectability. Further work is however recommended using full complement of a 3D static and dynamic simulation model coupled with a complete fluid PVT model in order to assess more complex 3D dynamic interactions between the injectors and producers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.