Abstract

A 4D computational incoherent imaging technique using accelerating Airy beams (A<sup>2</sup>-beams) and nonlinear reconstruction (NLR) has been developed. The phase mask was designed as a binary version for the generation of a sparse random array of A<sup>2</sup>-beams. The imaging process consist of three steps. In the first step a 4D point spread function (PSF) was recorded at different wavelengths and depths. In the next step, a multicolor, multiplane object was loaded and a single camera shot was recorded. Finally, the 4D information of the object was reconstructed by processing the object intensity distribution and 4D PSFs. The simulation results for the imaging concept are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.