Abstract

AbstractDynamic three‐dimensional computed tomography (CT) imaging of liquid transport in porous media has primarily been conducted at high brilliance synchrotrons thus allowing fast, sometimes sub‐second, temporal resolution to be obtained. University laboratory CT instruments lack the photon flux available at synchrotrons, limiting the obtainable spatiotemporal resolution. Here, we discuss our experiences with instrumentation and software methods to conduct time‐resolved micro‐computed tomography (4D‐CT) experiments of flow in porous media, based on a conventional CT instrument operated with a highly undersampled number of projections. An experimental stage outfitted with syringe pumps placed on a slip ring allowed two‐phase flow experiments to be carried out with continuous unidirectional rotation and without obstruction of the liquid supply lines. An iterative reconstruction algorithm based on a priori information was used to provide high image quality and ∼30 s time resolution despite the few and low‐exposed projections compared to standard protocols. The experimental technique was demonstrated with imbibition and drainage in glass bead‐pack and Bentheimer sandstone samples with sub‐minute temporal resolution, allowing the liquid configurations just before and after fast dynamic phenomena such as cooperative pore‐filling events and Haines jumps to be captured. Power law scaling exponents for burst volumes associated with imbibition and drainage were estimated and compared with the literature. That 4D‐CT experiments can be carried out using conventional CT instruments to challenge contemporary permeability models is of high importance for many geo‐, bio‐ and environmental physics challenges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.