Abstract

Functional ultrasound imaging (fUS) recently emerged as a promising neuroimaging modality to image and monitor brain activity based on cerebral blood volume response (CBV) and neurovascular coupling. fUS offers very good spatial and temporal resolutions compared to fMRI gold standard as well as simplicity and portability. It was recently extended to 4D fUS imaging in preclinical settings although this approach remains limited and complex. Indeed 4D fUS requires a 2D matrix probe and specific hardware able to drive the N2 elements of the probe with thousands of electronic channels. Several under-sampling approaches are currently investigated to limit the channel count and spread ultrasound 4D modalities. Among them, the Row Column Addressing (RCA) approach combined with ultrafast imaging is a compelling alternative using only N + N channels. We present a large field of view RCA probe prototype of 128 + 128 channels and 15 MHz central frequency adapted for preclinical imaging. Based on the Orthogonal Plane Wave compounding scheme, we were able to perform 4D vascular brain acquisitions at high volume rate. Doppler volumes of the whole rat brain were obtained in vivo at high rates (23 dB CNR at 156 Hz and 19 dB CNR at 313 Hz). Visual and whiskers stimulations were performed and the corresponding CBV increases were reconstructed in 3D with successful functional activation detected in the superior colliculus and somato-sensorial cortex respectively. This proof of concept study demonstrates for the first time the use of a low-channel count RCA array for in vivo 4D fUS imaging in the whole rat brain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.