Abstract
Objective: With a 10-minute 4D flow MRI scan, the distribution of blood flow to individual arteries throughout the brain can be analyzed. This technique has potential to become a biomarker for treatment decisions, and to predict prognosis after stroke. To efficiently analyze and model the large dataset in clinical practice, automatization is needed. We hypothesized that identification of selected arterial regions using an atlas with a priori probability information on their spatial distribution can provide standardized measurements of blood flow in the main cerebral arteries. Approach: A new method for automatic placement of measurement locations in 4D flow MRI was developed based on an existing atlas-based method for arterial labeling, by defining specific regions of interest within the corresponding arterial atlas. The suggested method was evaluated on 38 subjects with carotid artery stenosis, by comparing measurements of blood flow rate at automatically selected locations to reference measurements at manually selected locations. Main results: Automatic and reference measurement ranged from 10 to 580 ml min−1 and were highly correlated (r = 0.99) with a mean flow difference of 0.61 ± 10.7 ml min−1 (p = 0.21). Out of the 559 arterial segments in the manual reference, 489 were correctly labeled, yielding a sensitivity of 88%, a specificity of 85%, and a labeling accuracy of 87%. Significance: This study confirms that atlas-based labeling of 4D flow MRI data is suitable for efficient flow quantification in the major cerebral arteries. The suggested method improves the feasibility of analyzing cerebral 4D flow data, and fills a gap necessary for implementation in clinical use.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Biomedical Physics & Engineering Express
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.