Abstract
High-temperature-ultrafine precipitate strengthened (HT-UPS) steel is a potential structural material for advanced nuclear reactors; however, its irradiation response is not well understood. This research provides insight into irradiation-induced effects, such as precipitate evolution mechanisms and four-dimensional morphological evolution, in HT-UPS steel using synchrotron micro-computed tomography. Identical specimens were characterized pre-irradiation and post-irradiation following neutron exposure up to 0.3 displacements per atom at 600 °C. Irradiation effects were also differentiated from the annealing response of precipitates. Following neutron irradiation, the average Cr23C6 precipitate size reduced, affected by the synergy of nucleation and growth, ballistic dissolution, and inverse coarsening, which was observed at fluences an order of magnitude lower than previously observed. Annealing at 600 °C for 32 h increased the average Cr23C6 precipitate size and decreased the phase fraction, attributed to precipitate coarsening. The precipitate morphology evolution and resultant mechanisms can be utilized to parameterize and validate microstructural models simulating radiation damage or annealing.Graphical abstract
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.