Abstract

CT perfusion (CTP) is a powerful tool for the assessment of cerebrovascular disease. However, CTP maps are significantly different depending on CTP software and algorithm, even when using identical image data. We developed a phase-ratio image map (PI map), which was a novel perfusion map, without using CTP software. The purpose of this study was to investigate the usefulness of the PI map by comparing it with a positron emission tomography (PET) image. Twenty patients (16 men, 4 women; mean age: 61.6 years) with unilateral cervical and intracranial steno-occlusive disease underwent CTP. CTP source images were obtained at 1-s intervals of 23 times and 5 intervals using dynamic multiphase imaging. An early-phase image was generated by computing the average of CT images for 5 s in the vicinity of the peak enhancement curve of a normal hemisphere. A delayed-phase image was generated by computing the average of CT images for 5 s immediately after the early phase. The PI map was created by dividing the delayed-phase image by the early-phase image. We investigated the validity of the PI map compared with PET-cerebral blood flow (CBF). Lesion-to-normal ratios between a PET-CBF and the PI map or two conventional CTP-CBFs were observed and compared, and the relative errors were also compared. There was a strong correlation between the PET-CBF and the PI map (R=0.82). Correlations between the PET-CBF and two CTP-CBFs were weak (R=0.30) and middle (R=0.62), respectively. The relative error between the PI map and the PET-CBF was within 10% in most cases. The PI map was more similar to the PET-CBF on perfusion evaluation, and did not depend on CTP software. The robustness and simplicity of the PI mapping method would be advantageous compared with conventional CTP mapping methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.