Abstract

Abstract Using a case study from the Mungo Field in the Central North Sea, we investigate the relative impact of acquisition and processing improvements on 4D seismic repeatability. The results show that, while advancements in both have helped to reduce 4D noise, significant noise reduction can be attributed to processing alone. 4D noise can be thought of as any non-production-related amplitudes that are observable on a 4D difference section, and has both random and coherent components. Both are undesirable as they can mask any real 4D signal. A great deal of effort is employed to reduce noise levels by optimizing acquisition and processing between the 3D surveys, which are differenced to highlight the 4D signal. This paper studies the changes introduced by acquisition and processing improvements using the calibrated difference in reflectivity measure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.