Abstract
RNA structure plays an important role in regulating cellular function and there is a significant emerging interest in targeting RNA for drug discovery. Here we report the identification of 4-aminoquinolines as modulators of RNA structure and function. Aminoquinolines have a broad range of pharmacological activities, but their specific mechanism of action is often not fully understood. Using electrophoretic mobility shift assays and enzymatic probing we identified 4-aminoquinolines that bind the stem-loop II motif (s2m) of SARS-CoV-2 RNA site-specifically and induce dimerization. Using fluorescence-based RNA binding and T-box riboswitch functional assays we identified that hydroxychloroquine binds the T-box riboswitch antiterminator RNA element and inhibits riboswitch function. Based on its structure and riboswitch dose-response activity we identified that the antagonist activity of hydroxychloroquine is consistent with it being a conformationally restricted analog of the polyamine spermidine. Given the known role that polyamines play in RNA function, the identification of an RNA binding ligand with the pharmacophore of a conformationally restricted polyamine has significant implications for further elucidation of RNA structure-function relationships and RNA-targeted drug discovery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.