Abstract

The electronic properties of self-organized GaSb quantum dots (QDs) embedded in GaAs n+p diodes were investigated by capacitance–voltage and deep level transient spectroscopy. The localization energy of the hole ground state is 450 meV. State filling lowers the activation energy to 150 meV for completely charged QDs containing 15 holes. The hole retention time at room temperature for a single hole per QD is extrapolated to be in the microsecond range, about five orders of magnitude longer than in In(Ga)As/GaAs QDs. Hence, we consider GaSb/GaAs to be a suitable material system for future QD memory applications which require long storage times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.