Abstract

BackgroundThe targeting of the prostate-specific membrane antigen (PSMA) is of particular interest for radiotheragnostic purposes of prostate cancer. Radiolabeled PSMA-617, a 1,4,7,10-tetraazacyclododecane-N,N′,N′′,N′′′-tetraacetic acid (DOTA)-functionalized PSMA ligand, revealed favorable kinetics with high tumor uptake, enabling its successful application for PET imaging (68Ga) and radionuclide therapy (177Lu) in the clinics. In this study, PSMA-617 was labeled with cyclotron-produced 44Sc (T1/2 = 4.04 h) and investigated preclinically for its use as a diagnostic match to 177Lu-PSMA-617.Results44Sc was produced at the research cyclotron at PSI by irradiation of enriched 44Ca targets, followed by chromatographic separation. 44Sc-PSMA-617 was prepared under standard labeling conditions at elevated temperature resulting in a radiochemical purity of >97% at a specific activity of up to 10 MBq/nmol. 44Sc-PSMA-617 was evaluated in vitro and compared to the 177Lu- and 68Ga-labeled match, as well as 68Ga-PSMA-11 using PSMA-positive PC-3 PIP and PSMA-negative PC-3 flu prostate cancer cells. In these experiments it revealed similar in vitro properties to that of 177Lu- and 68Ga-labeled PSMA-617. Moreover, 44Sc-PSMA-617 bound specifically to PSMA-expressing PC-3 PIP tumor cells, while unspecific binding to PC-3 flu cells was not observed. The radioligands were investigated with regard to their in vivo properties in PC-3 PIP/flu tumor-bearing mice. 44Sc-PSMA-617 showed high tumor uptake and a fast renal excretion. The overall tissue distribution of 44Sc-PSMA-617 resembled that of 177Lu-PSMA-617 most closely, while the 68Ga-labeled ligands, in particular 68Ga-PSMA-11, showed different distribution kinetics. 44Sc-PSMA-617 enabled distinct visualization of PC-3 PIP tumor xenografts shortly after injection, with increasing tumor-to-background contrast over time while unspecific uptake in the PC-3 flu tumors was not observed.ConclusionsThe in vitro characteristics and in vivo kinetics of 44Sc-PSMA-617 were more similar to 177Lu-PSMA-617 than to 68Ga-PSMA-617 and 68Ga-PSMA-11. Due to the almost four-fold longer half-life of 44Sc as compared to 68Ga, a centralized production of 44Sc-PSMA-617 and transport to satellite PET centers would be feasible. These features make 44Sc-PSMA-617 particularly appealing for clinical application.

Highlights

  • The targeting of the prostate-specific membrane antigen (PSMA) is of particular interest for radiotheragnostic purposes of prostate cancer

  • The KD values obtained for 44Sc-PSMA-617 and 177Lu-PSMA-617 were in the same range, but somewhat higher values were determined for the 68Ga-labeled PSMA ligands (Additional file 1: Figure S2)

  • The results were converted into relative PSMA-binding affinities, which were similar for 44Sc-PSMA-617 and 177LuPSMA-617, but slightly reduced for the 68Ga-labeled PSMA ligands (Table 2)

Read more

Summary

Introduction

The targeting of the prostate-specific membrane antigen (PSMA) is of particular interest for radiotheragnostic purposes of prostate cancer. A number of PSMA-targeted nuclear imaging agents were developed [12,13,14], among those PSMA-11, which comprises an acyclic N,N′-bis-[2-hydroxy-5-(carboxyethyl)benzyl]ethylenediamine-N,N′-diacetic acid (HBED-CC)-chelator suitable for coordination of 68Ga (T1/2 = 68 min, Eβ+av = 830 keV; Fig. 1, Table 1) [15, 16]. This PSMA radioligand has been used successfully in clinics for PET imaging of prostate cancer [17,18,19]. Several 18F-based PSMA-ligands are currently under development, and the first clinical applications with 18F-DCFPyl and 18F-PSMA-1007 revealed promising results [24, 25]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.