Abstract

We propose a novel coherent optical orthogonal frequency-division multiplexing (CO-OFDM) scheme with reduced guard interval (RGI) for high-speed high-spectral-efficiency long-haul optical transmission. In this scheme, fiber chromatic dispersion is compensated for within the receiver rather than being accommodated by the guard interval (GI) as in conventional CO-OFDM, thereby reducing the needed GI, especially when fiber dispersion is large. We demonstrate the generation of a 448-Gb/s RGI-CO-OFDM signal with 16-QAM subcarrier modulation through orthogonal band multiplexing. This signal occupies an optical bandwidth of 60 GHz, and is transmitted over 2000 km of ultra-large-area fiber (ULAF) with five passes through an 80-GHz-grid wavelength-selective switch. Banded digital coherent detection with two detection bands is used to receive this 448-Gb/s signal. Wavelength-division multiplexed transmission of three 80-GHz spaced 448-Gb/s RGI-CO-OFDM channels is also demonstrated, achieving a net system spectral efficiency of 5.2 b/s/Hz and a transmission distance of 1600 km of ULAF.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.