Abstract

Light-based three-dimensional (3D) printing of hydrogels has been widely adopted for accelerating bone regeneration. However, the design principles of traditional hydrogels do not take into consideration the biomimetic regulation of multiple stages throughout the bone healing, and the hydrogels made cannot effectively induce sufficient osteogenesis, which in turn greatly limits their capacity in guiding bone regeneration. The recent progress achieved in DNA hydrogel, which is based on synthetic biology, could facilitate the innovation of the current strategy due to its advantages, such as resistance to enzymatic degradation, programmability, structural controllability, and mechanical properties. However, 3D printing of DNA hydrogel is not well defined and appears to have a few distinct early forms. In this article, a perspective on the early development of 3D printing of DNA hydrogels is presented, and a potential implication of the hydrogel-based bone organoids built-up for bone regeneration is proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.