Abstract

Infrared sensors were used to quantify canopy temperature and thus detect differences in incipient water stress between a cool-season grass [Kentucky bluegrass (KBG) (Poa pratensis)] and a warm-season grass [buffalograss (BG) (Buchloe dactyloides)]. The infrared sensors, connected to a datalogger, measured average hourly leaf–air temperatures (TL–TA) 1 m above eight replicate plots of Kentucky bluegrass and eight replicate plots of buffalograss. Air temperature and relative humidity from a nearby weather station were used to calculate the average hourly vapor pressure deficit (VPD). In late July, we ceased irrigating and measured TL–TA and soil water content while allowing the turf to dry down for 5 weeks. Soil water content was measured with a neutron probe. Both species exhibited a significant relationship between TL–TA and VPD. As the VPD increased, TL–TA decreased in both species (KBG r2 = 0.73, BG r2 = 0.71) on the 2nd day after an irrigation during well-watered conditions. An artifact was created on the first day after an irrigation as a result of excessive surface evaporation. KBG and BG were similar under well-watered conditions. KBG had a higher TL–TA after 4 to 5 days without irrigation. By contrast, BG did not have a higher TL–TA until 25 to 30 days without irrigation. Part of BG's drought avoidance was extraction of soil water down to 0.9 m vs. 0.45 m for KBG.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call