Abstract

Flip-chip interconnect joints of copper/gold (Cu/Au) with 40- <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\mu{\rm m}$</tex> </formula> diameter and 100- <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\mu{\rm m}$</tex></formula> pitch were made between silicon (Si) chips and Cu substrates using solid-state bonding at 200 <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$^{\circ}{\rm C}$</tex></formula> with a static pressure of 250–400 psi (1.7–2.7 MPa). The array of 50 <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\,\times\,$</tex></formula> 50 Cu/Au columns was first created. In fabrication, photoresist with 50 <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\,\times\,$</tex></formula> 50 cavities of 40- <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\mu{\rm m}$</tex></formula> diameter and 45- <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex Notation="TeX">$\mu{\rm m}$</tex></formula> depth were produced on Si wafers, which were first coated with 30 nm chromium and 100 nm Au films. Cu of 25- <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\mu{\rm m}$</tex></formula> thickness was electroplated in the cavities, followed by 10 <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\mu{\rm m}$</tex></formula> of Au. After stripping the photoresist, the array of 50 <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\,\times\,$</tex></formula> 50 Cu/Au columns was obtained on a chip region of the wafer. The 50 <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\,\times\,$</tex></formula> 50 Cu/Au columns on the chip were bonded to a Cu substrate by solid-state bonding. No molten phase was involved and no flux was used. No underfill was applied. The corresponding load for each column was only 0.22–0.35 g. Cross-section scanning electron microscopy images show that Cu/Au columns were well bonded to the Cu substrate. Despite the large mismatch in the coefficient of thermal expansion between Si and Cu, no joint breakage was observed. The pull test was performed and the fracture modes were evaluated. The fracture force and fracture strength obtained were 11.2–14.2 kg and 35–44 MPa (5000–6400 psi), respectively. The measured fracture force is four times larger than the criterion of the pull-off test in MIL-STD-883E.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.