Abstract

The nuclide 44Ti is predicted to be produced in significant quantities in core-collapse supernovae, and indeed it has been observed in the supernova remnant Cassiopeia-A by space-based γ-ray telescopes. The main production of 44Ti takes place in the α-rich freeze-out phase deep inside the supernova. The key reactions governing the 44Ti abundance have been identified in an earlier sensitivity study. Using the recoil mass spectrometer DRAGON at the TRIUMF-ISAC facility in Vancouver, Canada, we measured the main production reaction 40Ca(α,γ)44Ti, resulting in an increased reaction rate compared to the rate derived from previous prompt γ-ray studies, which is commonly used in supernova models. The uncertainty of the 44Ti production is now dominated by the rate of reactions with short-lived nuclides around 44Ti, namely 45V(p,γ)46Cr, 44Ti(α,p)47V and 44Ti(α,γ)48Cr. The sensitivity of these reactions on the 44Ti production has been revisited.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.