Abstract
High resolution 40Ar- 39Ar age spectra have been measured on plagioclase and glass from two howardites. Both the plagioclase and glass from the gas-rich Bununu howardite show well-defined age plateaux, yielding distinct ages of 4.42 ± 0.04 and 4.24 ± 0.05 AE, respectively. These age patterns are rather well behaved and are interpreted as representing the distinct times of formation of plagioclase from igneous processes and of glass fragments produced by impact on the meteorite body. The release pattern for the glass from the heavily shocked Malvern howardite is undulating at low and intermediate temperatures but does have a high-temperature plateau. Its age spectrum indicates little apparent diffusion loss, but rather an extensive redistribution of either 40Ar during the shock event or of 39Ar during the neutron irradiation or both. The total K-Ar age of Malvern glass is 3.64 ± 0.04 AE and the high-temperature plateau is 3.73 ± 0.05 AE. The age spectrum of the Malvern plagioclase has an intermediate temperature “plateau” at 3.80 AE that represents 20% of the total 40Ar content and increases towards a high-temperature plateau at 4.29 ± 0.04 AE containing 26% of the total gas release. It seems likely that the event which formed the Malvern glass also reset part of the plagioclase. The distinct histories observed for the different phases of these howardites are consistent with their formation from a regolith. The present results along with similar young ages for igneous clasts from Kapoeta clearly show that the regoliths were extant on the parent bodies of howardites and that they were subjected to violent impact events at least as recently as 3.7 AE ago.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.