Abstract

Late Pennsylvanian sedimentary rocks in the Narragansett basin were metamorphosed (lower anchizone to sillimanite grade) during late Paleozoic regional metamorphism at ca. 275–280 Ma. Twenty-five variably sized concentrates of detrital muscovite were prepared from samples collected within contrasting low-grade areas (diagenesis — lower greenschist facies). Microprobe analyses suggest that the constituent detrital grains are not chemically internally zoned; however, some grains within several concentrates display very narrow (<25 μm), compositionally distinct, low-grade, epitaxial peripheral overgrowths. Detrital muscovite concentrates from the lower anchizone are characterized by internally concordant 40Ar/39Ar age spectra which define plateau ages of ca. 350–360 Ma. These are interpreted to date post-Devonian (Acadian) cooling within proximal source areas. Concentrates from lower grade sectors of the middle anchizone display slightly discordant spectra in which apparent ages systematically increase from ca. 250–275 Ma to define intermediate- and high-temperature plateaus of ca. 360–400 Ma. Detrital muscovite within samples from higher grade sectors of the middle anchizone and the upper anchizone are characterized by systematic low age discordance throughout both low-and intermediate-temperature increments. High-temperature ages only range up to ca. 330 Ma. Six size fractions of detrital muscovite from a sample collected within the lower greenschist facies have similarly discordant spectra, in which, apparent ages increase slightly throughout the analyses from ca. 250 Ma to 275 Ma. The detrital muscovite results are interpreted to reflect variable affects of late Paleozoic regional metamorphism. However, it is uncertain to what extent the systematic low age spectra discordance reflects intracrystalline gradients in the concentration of 40Ar and/or experimental evolution of gas from relatively non-retentive epitaxial overgrowths. However, low age discordance occurs regardless of the extent of epitaxial overgrowth. Intermediate-temperature increments evolved during 40Ar/39Ar whole-rock analyses of five slate/phyllite samples are characterized by internally consistent apparent K/Ca ratios. These are attributed to gas evolved from constituent, very fine-grained white mica. Samples from lower grade portions of the middle anchizone are characterized by intermediate-temperature apparent ages which systematically increase from ca. 275–300 Ma to ca. 360–375 Ma before evolution of a high-temperature contribution from detrital plagioclase feldspar. This age variation may reflect partial late Paleozoic rejuvenation of very fine-grained detrital material with a source age similar to that for the detrital muscovites. Slate/phyllite samples from upper sectors of the middle anchizone and from the upper anchizone were completely rejuvenated during late Paleozoic metamorphism and record intermediate-and high-temperature plateau ages of ca. 270–290 Ma. These data document that metamorphic conditions of the lower to middle biotite zone (ca. 325–350 °C) are required to completely rejuvenate intracrystalline argon systems of detrital muscovite. Therefore, the 40Ar/39Ar dating method may be useful in determination of detrital muscovite provenance and in resolution of the metamorphic evolution of low-grade terranes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.