Abstract

Due to the limitation of materials, PIC cannot achieve large magnitude phase modulation in a small size, and lacks the reconfigurable ability. LCoS makes use of the birefringence characteristic of liquid crystal to achieve a large amount of phase modulation in a small size, and has the capacity of reconstruction. Based on the experimental results of LCoS devices and basic liquid crystal waveguide devices, a liquid crystal waveguide is fabricated. While retaining the LCoS spatial optical phase modulation capability, the on‐chip liquid crystal waveguide and phase modulation capability are realized. The beam splitter, optical switch and Mach‐Zehnder interferometer optical circuit structure are constructed, which verifies the feasibility of the on‐chip waveguide structure of the liquid crystal waveguide phase modulator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.