Abstract

Purpose: Non-small cell lung cancer (NSCLC) patients with locally advanced unresectable disease have a grim prognosis. Radiotherapeutic strategies are necessary to improve the permanent eradication of thoracic disease. The poor results achieved with conventional external beam radiation therapy reflect in part, the inadequacy of such therapy in achieving its primary objective of achieving local control. The impact of three-dimensional conformal radiation therapy (3-DCRT) on local disease eradication and its potential role in improving survival is assessed.Design: This review addresses aspects of the software and hardware technology of 3-DCRT, the clinical and technical aspects of target volume definition, the use of 3-DCRT to predict radiation pneumonitis, strategies for dose escalation in NSCLC, and analyses the clinical results to date.Results: Initially investigators compared the best treatment techniques devised with conventional planning techniques to those devised with 3-DCRT. These analyses showed that 3-DCRT had the potential to deliver high dose radiation (>70 Gy) with minimal underdosing and with a concomitant relative sparing of normal tissues. This technical demonstration of enhanced therapeutic ratio is the basis for the evolving clinical utilization of 3-DCRT for NSCLC. Software and hardware developments continue to develop and have the potential to solve evolving clinical issues. Dose–volume-histograms have been used to accurately quantify lung dose and derived parameters have the potential to predict the risk of pneumonitis for individual patients before treatment. Initial clinical results have been promising and strategies for further dose escalation are emerging.Conclusion: Preliminary experience has resulted in promising survival following three-dimensional conformal radiation therapy alone for locally advanced NSCLC. More follow-up and experience will determine late toxicity, maximum dose, and efficacy of dose escalation with three-dimensional conformal radiation therapy. Strategies should be developed to integrate this modality into the combined treatment of locally advanced non-small cell lung cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.