Abstract

Arrayed Waveguide Grating Router (AWGR)-based interconnections for Multi-Socket Server Boards (MSBs) have been identified as a promising solution to replace the electrical interconnects in glueless MSBs towards boosting processing performance. In this article, we present an 8-socket glueless optical flat-topology Wavelength Division Multiplexing (WDM)-based point-to-point (P2P) interconnect pursued within the H2020 ICT project ICT-STREAMS and we report on our latest achievements in the deployment of the constituent silicon (Si)-photonic transmitter and routing building blocks, exploiting experimentally obtained performance metrics for analyzing the 8-socket chip-to-chip (C2C) connectivity in terms of throughput and energy efficiency. We demonstrate an 8-channel WDM Si-photonic microring-based transmitter (Tx) capable of providing 400 (8 × 50) Gb/s non-return-to-zero (NRZ) Tx capacity and an 8 × 8 Coarse-WDM (CWDM) Si-AWGR with verified cyclic data routing capability in O-band. Following an overview of our recently demonstrated crosstalk (XT)-aware wavelength allocation scheme, that enables fully-loaded AWGR-based interconnects even for typical sub-optimal XT values of silicon integrated CWDM AWGRs, we validate the performance of a full-scale 8-socket interconnect architecture through physical layer simulations exploiting experimentally-verified simulation models for the underlying Si-photonic Tx and routing circuits. This analysis reveals a total aggregate capacity of 1.4 Tb/s for an 8-socket interconnect when operating with 25 Gb/s line-rates, which can scale to 2.8 Tb/s at an energy efficiency of just 5.02 pJ/bit by exploiting the experimentally verified building block performance at 50 Gb/s line. This highlights the perspectives for up to 69% energy savings compared to the standard QuickPath Interconnect (QPI) typically employed in electronic glueless MSB interconnects, while scaling the single-hop flat connectivity from 4- to 8-socket interconnection systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.