Abstract

A 448 Gbit/s single-carrier dual-polarization 16-ary quadrature-amplitude-modulation (DP 16-QAM) signal and a 1.206 Tbit/s three-carrier DP 16-QAM signal are demonstrated using look-up table (LUT) correction and optical pulse shaping. The LUT correction is used to mitigate the effects of transmitter-based pattern-dependent distortion due to the high symbol rates. A programmable optical filter is employed to narrow the modulated signal spectrum and thereby enhance the spectral efficiency and reduce the requirements on the receiver bandwidth and analog-to-digital converter sampling rate. By combining these techniques, the back-to-back required optical signal-to-noise ratios are 26.6 dB and 27.2 dB for BER = 10(-3), and transmission over 1200 and 1500 km of standard single-mode fiber with EDFA amplification was achieved for the 448 Gbit/s signal (12% forward error correction (FEC) overhead) and 1.206 Tbit/s signal (20% FEC overhead), respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.