Abstract

We demonstrate a 40 Gb/s self-synchronizing, all-optical packet clock recovery circuit designed for efficient packet-mode traffic. The circuit locks instantaneously and enables sub-nanosecond packet spacing due to thelow clock persistence time. A low-Q Fabry-Perot filter is used as a passive resonator tuned to the line-rate that generates a retimed clock-resembling signal. As a reshaping element, an optical power-limiting gate is incorporated to perform bitwise pulse equalization. Using two preamble bits, the clock is captured instantly and persists for the duration of the data packet increased by 16 bits. The performance of the circuit suggests its suitability for future all-optical packet-switched networks with reduced transmission overhead and fine network granularity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.