Abstract
Semen lyophilisation is an interesting technique that might be a cheap alternative to long-term storage in liquid nitrogen. The first significant result of this method was achieved by Wakayama and Yanagimachi in the 1998 and demonstrated, for the first time, the birth of healthy mouse pups from epididymal freeze-dried (mouse) spermatozoa. The authors follow the lyophilisation technique, commonly used in the pharmaceutical and food industries, namely, deep freezing, which requires direct immersion of the semen sample into liquid nitrogen before vacuum drying. In this work, we focused on the freezing phase to improve and make the technique more reliable. We compared two protocols: 1) rapid freezing, where the semen is plunged directly into liquid nitrogen (LN group), and 2) slow freezing, where the sample is frozen with a freezing rate of 1°C min−1 until −50°C (SL group). Then, both frozen samples were lyophilized. Subsequently, after an interval ranging between 1 and 3 months, dry spermatozoa from LN and SL groups were used for intracytoplasmic sperm injection (ICSI), and the embryo development was evaluated at 24h (2-cell stage) and 7 days (expanded blastocyst) post-ICSI. Moreover, acrosome integrity was evaluated with Pisum sativum agglutinin (PSA) staining on part of the semen, immediately after freezing. The LN-group semen showed the acrosome completely melted, whereas the SL group showed better integrity of the acrosome, which was comparable to that of the normal frozen (vital) spermatozoa. At 24h post-ICSI the number of cleaved embryos in the SL group was higher than in the LN group (42/100 (42%) vs. 19/75 (25.3%), SL and LN, respectively; P=0.0253). The blastocyst rate 7 days after ICSI in the SL group was higher (7/100 (7%) than that in the LN group (2/75 (2.7%); P=0.0238). Our data show that lyophilisation can be conveniently achieved in ram spermatozoa without liquid nitrogen, thus simplifying the procedure. These data support the idea that lyophilisation might be a valuable and cheaper alternative to liquid nitrogen for long-term storage of ram semen.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.