Abstract

Abstract Kimberlites are extraordinary natural phenomena, ascending through the Earth’s lithosphere, entraining xenoliths, to erupt at the surface within hours to days of their inception deep within the lithospheric mantle. With the realization that some Ar/Ar phlogopite grain core ages may be indicative of geological events, we have undertaken high spatial resolution Ar/Ar dating of phlogopites in xenoliths and megacrysts from Kimberley, Monastery and Letseng in southern Africa, and Malaita, in the Solomon Islands, to est whether other mantle phlogopite cores may yield meaningful ages. Modelling of Ar diffusive loss profiles from phlogopite grain boundaries to cores provides information on both the eruption age and the duration of outgassing within the kimberlite magma, and hence yields estimates on diatreme ascent rates. The ascent durations are very similar for all of the southern African pipes studied, yielding durations of 0.9–6.9 days, assuming an average kimberlite magma temperature of 1000 °C. These can be compared to estimates from phlogopite xenoliths from Siberian diamond-bearing kimberlites yielding ascent durations of 2–15 hours (assuming the same magma temperature).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.