Abstract

High-speed optical switches are essential devices to construct next-generation optical networks. We have studied 2 <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\,\times\,$</tex></formula> 2 InAlGaAs/InAlAs hybrid-waveguide-type Mach–Zehnder interferometer-type optical switches and demonstrated low-polarization-dependent switching operation with crosstalks of less than <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">${-}{\rm 20}~{\rm dB}$</tex></formula> , injection currents of about 5 mA, and response times of about 3 ns. In this letter, our conventional 2 <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\,\times\,$</tex></formula> 2 optical switch was extended to a 4 <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\,\times\,$</tex></formula> 4 optical-switch fabric by a cascading approach. As a result, fundamental switching operation was confirmed with low power consumption and low polarization dependence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.