Abstract

Organic semiconductors as hole transport materials (HTMs) often require additives, such as LiTFSI and tert-butylpyridine (TBP), in order to enhance their hole conductivities. However, the combination of lithium salts and TBP leads to significant HTM morphological deformation and poor device stability. Here we have successfully applied tetrabutylammonium (TBA) salts to replace both LiTFSI and TBP. A high power conversion efficiency of 18.4% has been achieved for the devices with TBATFSI, which is higher than the control devices with LiTFSI and TBP (18.1%). We also found that the anions in the TBA salts play important roles in the hole conductivity and uniformity of the HTM layer, as well as the hysteresis of the devices. More importantly, the devices with TBATFSI and TBAPF6 demonstrated significantly enhanced environmental and thermal stability. This new strategy of using TBA salts is promising for developing stable organic HTM thin films for solar cell applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.