Abstract

IntroductionCardiac dysfunction after sepsis the most common and severe sepsis-related organ failure. The severity of cardiac damage in sepsis patients was positively associated to mortality. It is important to look for drugs targeting sepsis-induced cardiac damage. Our previous studies found that 4-phenylbutyric acid (PBA) was beneficial to septic shock by improving cardiovascular function and survival, while the specific mechanism is unclear.ObjectivesWe aimed to explore the specific mechanism and PBA for protecting cardiac function in sepsis.MethodsThe cecal ligation and puncture-induced septic shock models were used to observe the therapeutic effects of PBA on myocardial contractility and the serum levels of cardiac troponin-T. The mechanisms of PBA against sepsis were explored by metabolomics and network pharmacology.ResultsThe results showed that PBA alleviated the sepsis-induced cardiac damage. The metabolomics results showed that there were 28 metabolites involving in the therapeutic effects of PBA against sepsis. According to network pharmacology, 11 hub genes were found that were involved in lipid metabolism and amino acid transport following PBA treatment. The further integrated analysis focused on 7 key targets, including Comt, Slc6a4, Maoa, Ppara, Pparg, Ptgs2 and Trpv1, as well as their core metabolites and pathways. In an in vitro assay, PBA effectively inhibited sepsis-induced reductions in Comt, Ptgs2 and Ppara after sepsis.ConclusionsPBA protects sepsis-induced cardiac injury by targeting Comt/Ptgs2/Ppara, which regulates amino acid metabolism and lipid metabolism. The study reveals the complicated mechanisms of PBA against sepsis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call