Abstract

A simple and effective strategy for the extraction of highly to moderately polar phenols in water samples was developed by synthesizing a series of 4-phenyl-1,2,3-triazole functionalized SBA-15 sorbents (xN3-Ph-SBA-15; x = 2 – 10 wt%) via two steps: azide functionalization of SBA-15 and its click reaction with phenylacetylene. The formed sorbents, which have a blend of both polar (1,2,3-triazole) and non-polar (long chain alkyl groups) sites were characterized using magic angle spinning NMR, surface area, pore size/pore volume N2 adsorption-desorption isotherms, scanning electron microscopy, and Fourier transform infrared spectroscopy. The surface area and pore size/pore volume were seen to decrease with increasing loading of 4-phenyl-1,2,3-triazole. The sorbents were used in a stir bar-supported micro-solid-phase extraction (SB-µ-SPE) for seven selected phenols in 10 mL water samples, and in combination with gas chromatography – mass spectrometry (GC-MS). A wide number of parameters were studied in the method optimization: 10N3-Ph-SBA-15 was the best sorbent which performed better using 20 mg dosage; 15 min extraction time; 300 µL of ethyl acetate as desorption solvent, 20 min desorption time; and ionic strength set at 0.5 g NaCl. The approach provided the desired linearity range for all tested phenols with R2 value up to 0.9989 and detection limit (LOD) of 0.23–0.37 ng mL−1. Relative standard deviation (RSD) and relative recovery experiments were tested using phenols spiked at 1, 100 and 400 ng mL−1. RSD values were calculated in the range of 2.3–7.5% and the relative recoveries in the wastewater matrix successfully presented a range of 88.5–99.2%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.