Abstract
AimUrinary glycoproteins such as Tamm Horsfall Protein (THP) and Osteopontin (OPN) are well established key regulators of renal stone formation. Additionally, recent revelations have highlighted the influence of Endoplasmic Reticulum (ER) and mitochondria of crucial importance in nephrolithiasis. However, till date conclusive approach highlighting the influence of ER stress on urinary glycoproteins and chaperone in nephrolithiasis remains elusive. Therefore, the present study was focussed on deciphering the possible effect of 4-PBA mitigating ER stress on urinary glycoproteins and calnexin (chaperone) with emphasis on interlinking calcium homeostasis in hyperoxaluric rats. Material and methodsPost 9 days of treatment, animals were sacrificed, and renal tissues were investigated for urinary glycoproteins, calnexin, calcium homeostasis, ER environment, redox status, and mitochondrial linkage. Key findings4-PBA appreciably reversed the altered levels of THP, OPN, and calnexin observed along with curtailing the disrupted calcium homeostasis when assessed for SERCA activity and intra-cellular calcium levels. Additionally, significant improvement in the perturbed ER environment as verified by escalated ER stress markers, disturbed protein folding-aggregation-degradation (congo red assay) pathway, and redox status was found post 4-PBA intervention. Interestingly, linkage of ER stress and mitochondria was established under hyperoxaluric conditions when assessed for protein levels of VDAC1 and GRP75. Significance4-PBA treatment resulted in rectifying the repercussions of ER-mitochondrial caused distress when assessed for protein folding/aggregation/degradation events along with disturbed calcium homeostasis. The present study advocates the necessity to adopt a holistic vision towards hyperoxaluria with emphasis on glycoproteins and ER environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.