Abstract
A graph G is k-ordered if for any sequence of k distinct vertices of G, there exists a cycle in G containing these k vertices in the specified order. It is k-ordered Hamiltonian if, in addition, the required cycle is Hamiltonian. The question of the existence of an infinite class of 3-regular 4-ordered Hamiltonian graphs was posed in 1997 by Ng and Schultz.13At the time, the only known examples were K4and K3,3. Some progress was made in 2008 by Mészáros,12when the Peterson graph was found to be 4-ordered and the Heawood graph was proved to be 4-ordered Hamiltonian; moreover, an infinite class of 3-regular 4-ordered graphs was found. In 2010 a subclass of generalized Petersen graphs was shown to be 4-ordered by Hsu et al.,10with an infinite subset of this subclass being 4-ordered Hamiltonian, thus answering the open question. In this paper we find another infinite class of 3-regular 4-ordered Hamiltonian graphs, part of a subclass of the chordal ring graphs. In addition, we classify precisely which of these graphs are 4-ordered Hamiltonian.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.