Abstract
The role of oxidative stress and ferroptosis in osteoarthritis (OA) pathogenesis is increasingly recognized. Notably, 4-octyl Itaconate (OI) has been documented to counteract oxidative stress and inflammatory responses, highlighting its therapeutic potential in OA. This study explored the effects of OI on GPX4 methylation, oxidative stress, and ferroptosis in chondrocytes affected by OA. Our results demonstrated that OI mitigated IL-1β-induced chondrocyte degeneration in a dose-dependent manner. It also suppressed reactive oxygen species (ROS) production and sustained GPX4 expression, thereby attenuating the degenerative impact of IL-1β and Erastin on chondrocytes by curtailing ferroptosis. Moreover, we observed that blocking GPX4 methylation could alleviate IL-1β-induced degeneration, oxidative stress, and ferroptosis in chondrocytes. The regulatory mechanism of OI on GPX4 expression in chondrocytes involved the inhibition of GPX4 methylation. In a mouse model of OA, OI’s protective effects against OA were comparable to those of Ferrostatin-1. Thus, OI reduced chondrocyte degeneration, oxidative stress, and ferroptosis by inhibiting GPX4 methylation, offering a novel mechanistic insight into its therapeutic application in OA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.