Abstract

Biomarkers of carcinogen uptake could provide important information pertinent to the question of exposure to environmental tobacco smoke (ETS) in childhood and cancer development later in life. Previous studies have focused on exposures before birth and during childhood, but carcinogen uptake from ETS in infants has not been reported. Exposures in infants could be higher than in children or adults because of their proximity to parents who smoke. Therefore, we quantified 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol and its glucuronides (total NNAL) in the urine of 144 infants, ages 3 to 12 months, who lived in homes with parents who smoked. Total NNAL is an accepted biomarker of uptake of the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Cotinine and its glucuronide (total cotinine) and nicotine and its glucuronide (total nicotine) were also quantified. Total NNAL was detectable in 67 of 144 infants (46.5%). Mean levels of total NNAL in the 144 infants were 0.083 +/- 0.200 pmol/mL, whereas those of total cotinine and total nicotine were 0.133 +/- 0.190 and 0.069 +/- 0.102 nmol/mL, respectively. The number of cigarettes smoked per week in the home or car by any family member when the infant was present was significantly higher (P < 0.0001) when NNAL was detected than when it was not (76.0 +/- 88.1 versus 27.1 +/- 38.2). The mean level of NNAL detected in the urine of these infants was higher than in most other field studies of ETS exposure. The results of this study show substantial uptake of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in infants exposed to ETS and support the concept that persistent ETS exposure in childhood could be related to cancer later in life.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call