Abstract
There are 6 modes in the full working state of a traditional 3-phase rectifier, and each mode is necessary for power factor correcting and for realizing the corresponding DC-link voltage. It is obvious that too many modes in the full working state increase the switch stresses, which results in high switching loss and increased economic cost. Reducing the number of working modes is a feasible solution to solve this problem. By improving the m-mode controllability in inverters, a 3-mode control strategy is derived for the traditional 3-phase rectifier to enhance its operational features. Note that the proposed control strategy can maintain a high-power factor above 0.99 and have higher efficiency when compared with the traditional control strategy. Finally, a lab-prototype with a load varying from 800 W to 4 kW is conducted to validate the feasibility of the proposed control strategy. Experimental results show that all of the tested cases have a 0.99 power factor and that highest efficiency of 96.7%. The results also reveal that the proposed strategy is superior to the traditional one in laboratory conditions. In addition, the proposed method is generalized and can be extended to other rectifier topologies.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.