Abstract

Insights into sequential leukocyte–endothelial interactions during leukocyte trafficking have been obtained through experiments using human umbilical vein endothelial cells (HUVEC) under flow conditions. To investigate leukocyte–brain endothelial cell interactions, we developed a dynamic in vitro system, using Transfected Human Brain Microvascular Endothelial Cells (THBMEC) and a parallel plate flow chamber. Human peripheral blood mononuclear cells (PBMC) were perfused across confluent THBMEC cultures at a velocity that approximates the rate found in human brain capillaries. Leukocyte–THBMEC interactions were visualized by phase-contrast microscopy, and images were captured on a CCD camera. To simulate inflammatory conditions, we activated THBMEC with the inflammatory cytokines tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ), which up-regulated chemokine and adhesion molecule expression in THBMEC without affecting the distribution of immunoreactivity for tight junction-associated proteins. PBMC adhesion was enhanced by cytokine-mediated activation of THBMEC. G protein-coupled receptor (GPCR) activation was essential for leukocyte–THBMEC interaction, as pertussis toxin (PTX) treatment of PBMC abrogated PBMC adhesion to activated THBMEC. The anti-α4 integrin antibody, natalizumab, infused into MS patients, significantly reduced the adhesion of their ex vivo PBMC to activated THBMEC under flow conditions. Further study showed that alternatively spliced fibronectin containing the CS1 region (FN-CS1), but not Vascular Cell Adhesion Molecule type 1 (VCAM-1), was the ligand of α4 integrin on activated THBMEC. Blocking FN-CS1 abrogated PBMC adhesion on activated THBMEC, while anti-VCAM-1 antibodies had no effect. These results established a novel in vitro dynamic BBB model. We also demonstrated the dependence of leukocyte–endothelial interactions in this model on α4 integrins and FN-CS1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.