Abstract
Neisseria gonorrhoeae, an obligate human pathogen, is a leading cause of communicable diseases globally. Due to rapid development of drug resistance, the rate of successfully curing gonococcal infections is rapidly decreasing. Hence, research is being directed toward finding alternative drugs or drug targets to help eradicate these infections. 4-Hydroxy-tetrahydrodipicolinate reductase (DapB), an important enzyme in the meso-diaminopimelate pathway, is a promising target for the development of new antibiotics. This manuscript describes the first structure of DapB from N. gonorrhoeae determined at 1.85 Å. This enzyme uses NAD(P)H as cofactor. Details of the interactions of the enzyme with its cofactors and a substrate analog/inhibitor are discussed. A large scale bioinformatics analysis of DapBs' sequences is also described.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.