Abstract

We have presented a concept of ultralow-pressure reverse osmosis membrane based on hyperbranched polyesteramide through interfacial reaction promoted by pyridine derivate. In this strategy, a key catalyst of 4-dimethylaminopyridine, which can both eliminate the steric hindrance of acyl transfer reaction and facilitate the phase transfer in interfacial polymerization, is adopted to drive the formation of a thin film composite membrane from the hyperbranched polyesteramide and trimesoyl chloride. The results of the characterization demonstrate that a dense, rough, and hydrophilic active layer with a thickness of about 100 nm is formed when the 4-dimethylaminopyridine catalyst is used. The salt rejections for Na2SO4, NaCl, and MgSO4 of the as-prepared composite membrane are higher than 92%, especially for Na2SO4 with 98% rejection. The water fluxes reach about 30-40 L·m(-2)·h(-1) even at an operation pressure of 0.6 MPa. The membrane exhibits good chlorine-resistance ability but poor resistance abilities to acidic and alkaline solutions in the physical-chemical stability experiment. It is also found that the resultant membrane possesses excellent separation performance for PEG-200, showing a promising way to separate small organic molecules from water.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.