Abstract

Connective tissue growth factor (CTGF/CCN2), a member of the CCN superfamily of secreted cysteine-rich glycoproteins, is a central mediator of tissue remodeling and fibrosis. CTGF is suggested to be an important down-stream effector of transforming growth factor-beta (TGF-β) signaling and has therefore reached considerable pathophysiological relevance because of its involvement in the pathogenesis of fibrotic diseases, atherosclerosis, skin scarring, and other conditions with excess production of connective tissue. In a search for inhibitors of inducible CTGF expression from fungi, two new macrocyclic lactones, namely 4-dechloro-14-deoxy-oxacyclododecindione (1) and 14-deoxy-oxacylododecindione, (2) along with the previously described congener oxacyclododecindione (3) were isolated from fermentations of the imperfect fungus Exserohilum rostratum. The structure of the compounds were elucidated by a combination of one- and two-dimensional NMR spectroscopy and mass spectrometry. Compounds 1 and 2 turned out to inhibit TGF-β induced CTGF promoter activity in transiently transfected HepG2 cells in a dose-dependent manner with IC50 values of 1.8μM and 336nM, respectively, and also antagonized TGF-β induced cellular effects including CTGF mRNA levels, CTGF protein expression and tube formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.