Abstract
Commercial LiPF6-based electrolytes face limitations in oxidation stability (4.2 V) and water tolerance (10 ppm). While replacing LiPF6 with lithium bis(trifluoromethane)sulfonimide (LiTFSI) improves water tolerance, it induces Al current collector corrosion above 3.7 V vs. Li/Li+. To address this, lithium cyano(trifluoromethanesulfonyl)imide (LiCTFSI) is proposed here as a non-corrosive, moisture-tolerant alternative. The 2.0 M LiCTFSI/propylene carbonate (PC)-fluoroethylene carbonate (FEC) (7:3 by volume) electrolyte enables LiNi0.8Co0.1Mn0.1O2 (NCM811) cathodes to reach 210 mAh g-1 (2.8-4.6 V) with a cycle life of 500. Full cells with NCM811||graphite (2.0 mAh cm-2) show 77.8% capacity retention after 500 cycles. Even with 2000 ppm moisture in the electrolyte, full cells maintain high cycling stability, reducing the need for costly dry rooms. The electrolyte's low freezing point and high thermal stability enable the operation from -20 °C to 60 °C, delivering 168 mAh g-1 at -20 °C and retaining 94% capacity after 100 cycles at 60 °C. In contrast, cells with commercial LiPF6 electrolyte deliver 71 mAh g-1 at -20°C and retain 52.7% after 100 cycles at 60 °C. This novel salt offers a cost-effective solution for developing robust, high-performance batteries suitable for extreme conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.