Abstract

Malaria kills approximately 1 million people a year, mainly in sub-Saharan Africa. Essential steps in the life cycle of the parasite are the development of gametocytes, as well as the formation of oocysts and sporozoites, in the Anopheles mosquito vector. Preventing transmission of malaria through the mosquito is necessary for the control of the disease; nevertheless, the vast majority of drugs in use act primarily against the blood stages. The study described herein focuses on the assessment of the transmission-blocking activities of potent antierythrocytic stage agents derived from the 4(1H)-quinolone scaffold. In particular, three 3-alkyl- or 3-phenyl-4(1H)-quinolones (P4Qs), one 7-(2-phenoxyethoxy)-4(1H)-quinolone (PEQ), and one 1,2,3,4-tetrahydroacridin-9(10H)-one (THA) were assessed for their transmission-blocking activity against the mosquito stages of the human malaria parasite (Plasmodium falciparum) and the rodent parasite (P. berghei). Results showed that all of the experimental compounds reduced or prevented the exflagellation of male gametocytes and, more importantly, prevented parasite transmission to the mosquito vector. Additionally, treatment with ICI 56,780 reduced the number of sporozoites that reached the Anopheles salivary glands. These findings suggest that 4(1H)-quinolones, which have activity against the blood stages, can also prevent the transmission of Plasmodium to the mosquito and, hence, are potentially important drug candidates to eradicate malaria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.